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Surnmury The two major aglycones (I) and (11) from the 
tumour inhibitory saponins of Acer negundo are shown to 
be diesters of a new triterpene; each aglycone yields 
acetic acid and a unique nonadienoic acid upon hydrolysis. 

IN the course of a continuing search for tumour inhibitors 
of plant origin, systematic fractionation of an extract of 
Acer negundo L. yielded single-spot acidic saponin P.2 
The material showed significant inhibitory activity against 
the sarcoma 180 and the Walker intramuscular carcino- 
sarcoma 256 tumour systems,% and further testing indicated 
that saponin P is the most promising of the known tumour- 
inhibitory saponins.ss4 We report here the structural 
elucidation of two novel triterpene ester aglycones, acerotin 
(I) and acerocin (11), obtained upon hydrolysis of 
saponin P. 

Acid hydrolysis of saponin P yielded glucose and arabinose 
(detected by g.1.c. of their trimethylsilyl ethers) and a 
mixture of acidic aglycones. The aglycones were separated 
by preparative t.1.c. on silica gel and then on alumina to 
yield the major components: acerotin (I) and acerocin (11). 
Acerotint (I), C4,H&7, showed m.p. 240-243" ; Amax 
(MeOH) 264 nm (E 28,400) ; Amax (KBr) 5.73, 5-76, 5.87, 6.1 1, 
6.20 pm ; mass spectrum M+ 6664496 (required 666-4496). 
Acerocin (11), C,,H,,O,, showed m.p. 205--.207"; Amax 
266nm (E 22,900); Amax (KBr) 5.71, 5.77, 5.81, 6-12, 6.26 
pm; mass spectrum M+ 66604513 (required 666.4496). 
Further treatment of the aglycones with acid failed to 
cause any interconversion, indicative that saponin P was 
a mixture. 

On alkaline hydrolysis, both aglycones (I) and (11) 
yielded acerogenic acid (111), C,,H4,0,: m.p. 308-310"; 
U.V. end absorption 210 nm (E 4400); Amax (KBr) 5.90 pm; 
mass spectrum M+ 488. On treatment with diazomethane 
the acid (111) formed a methyl ester (IV), C,,H5,0,: m.p. 
236-238"; A,,, (KBr) 5.82pm, which on treatment with 
acetic anhydride in pyridine yielded the triacetate (V), 
&.7H&,: m.p. 212-213O; Amax (KBr) 5.69, 5.77, 8-04 pm; 
mass spectrum m/e 568 (M+ - AcOH). Thus the oxygen 
atoms in the acid (111) were present as a carboxyl group 
and as three hydroxyl groups indicated by the n.m,r. 
spectrum of the acetate (V) to be secondary (7 4.81 and 5-04, 
AB quartet, J = 10 Hz and T 5.51, dd, J = 6, 9Hz). The 
n.m.r. spectrum (C,D,N) of the methyl ester (IV) contained 
signals for seven quaternary C-methyl groups, one olefinic 
proton (7 4-50, m), and three protons on carbon bearing 
hydroxyl (7 5.6-6.3, m). The mass spectra of the acid (111) 
and the ester (IV) corresponded well with a /?-amyrin 
skeleton containing a 12,13-double bond. The typical5 
retro-Diels-Alder fragmentation gave ions at m/e 280 
[294 in (IV)] and m/e 207 (from rings D and E and from 
r ings A and B, respectively). The former ion lost 18, 36, or 
46 mass units [lS, 36, or 60 in (IV)] confirming the presence 
of the carboxyl and two hydroxyl groups in the D,E-ring 
system. The remaining hydroxyl group was assigned to 

C-3 on biogenetic grounds. The carboxyl group could be 
assigned to C-17, as treatment with bromine in methanol6 
converted the acid (111) to a bromo-y-lactone: Amax (KBr) 
5.66pm. The n.m.r. spectrum of the acetate (V) showed 
that the two hydroxyl groups in the D,E-ring system of the 
acid (111) constituted a diequatorial diol. These assign- 
ments were confirmed by reduction of the methyl ester (IV) 
with lithium aluminium hydride to yield 16-deoxybaning- 
togenol C, whose structure has been derived from an X-ray 
crystallographic s t ~ d y . ~  
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The alkaline hydrolysis of acerotin (I) also yielded the 
truns,truns-diene-acid (IX) , which was isolated by g.1.c. 
after conversion into the optically-active methyl ester: Amax 
260 nm; A,,, (CDCl,) 5.87, 6.10, 6.19, 10.00 (trans-olefin) 
pm; mass spectrum m/e 168 (M+), 111 (M+ - C,H,). 
Acerocin (11) yielded instead the isomeric optically active 
2-cis-4-trans-diene-acid (X) , which was isolated as the 
methyl ester: Amax 263nm; Amax (CDC1,) 5-87, 6.13, 6.26, 
10.10 (trans-olefin), 1042 pm (cis-olefin). The n.m.r. 
spectra of both compounds showed the presence of the 
s-butyl group and the coupling constants and chemical 
shifts of the olefinic protons were directly comparable to 
those of methyl ZJ4-truns,truns- and 2-cis-4-tmns-sorbate, 
respectively.* The U.V. and i.r. spectra agreed well with 
model compounds9 and the nz/e 111 peak was characteristic 
of a methyl at#?,y&diene-ester.lo 

In the n.m.r. spectra of the aglycones (I) and (11) the AB 
quartet appeared at r 4.65 and 4-98, indicative that the 
ester functions are at C-21 and C-22. Partial hydrolysis 
of the aglycones (I) and (11) gave the deacetyl derivatives 

t All new crystalline compounds have been characterised by concordant elemental analyses. 
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(VI) and (VII), respectively. Oxidation in each case with 
the Jones reagent gave a diketo-acid, which was rapidly 
decarboxylated on warming. Thus the diene-ester function 
was assigned to  C-2 1 and the acetyl group to C-22. Acetyla- 
tion of the deacetyl compound (VI) gave 3-acetylacerotin 
(VIII) , demonstrating that ester exchange had not occurred. 

In view of the recent demonstration of the importance of 
ap-unsaturated carbonyl functions €or the tumour-inhibi- 
tory activity of other natural products,u the unsaturated 

ester function may play a significant role in the activity of 
these saponins. 
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